Stabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in multiferroic BiFeO3.
نویسندگان
چکیده
Multiferroic BiFeO3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. However, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and the Dzyaloshinskii-Moria interactions drives the stabilization of the weak ferromagnetism. Furthermore, energetically competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism "on" and "off" under the application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.
منابع مشابه
Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3.
Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO(3) reveal a long-wavelength spin density wave generated by ∼1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic regions of dimension 0.03 microns along [110], to several microns along [111], confirming a long-...
متن کاملDEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS
Title of Dissertation: DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS Junling Wang, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Manfred Wuttig, Department of Materials Science and Engineering Multiferroics, defined as materials with coexistence of at least two of the electric, elastic, and magnetic orders, have attracted enormous research activities recentl...
متن کاملStructural, Magnetic and Photocatalytic Properties of BiFeO3 Nanoparticles
Single phase BiFeO3 (BFO) nanoparticles as a visible light photocatalyst were successfully synthesized by thermal decomposition of the glyoxylate precursor. The glyoxylate precursors were formed by the redox reaction between ethylene glycol and nitrate ions. The phase evolution, structure and optical properties of BFO nanoparticles were characterized by X-ray diffraction, electron microscopy an...
متن کاملInfluence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite
The dependencies on strain and oxygen vacancies of the ferroelectric polarization and the weak ferromagnetic magnetization in the multiferroic material bismuth ferrite, BiFeO3, are investigated using first principles density functional theory calculations. The electric polarization is found to be rather independent of strain, in striking contrast to most conventional perovskite ferroelectrics. ...
متن کاملDomain Engineering for Enhanced Ferroelectric Properties of Epitaxial (001) BiFeO Thin Films
Adv. Mater. 2009, 21, 817–823 2009 WILEY-VCH Verlag Gm Multiferroic BiFeO3 has attracted great interest due to its promising application tomagnetoelectric devices. In addition, the high remanent polarization and piezoelectric response of BiFeO3 thin films, which are comparable to those of conventional Ti-rich lead zirconia titanate, suggested BiFeO3 as a strong candidate for lead-free nonvolati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 5 شماره
صفحات -
تاریخ انتشار 2015